Fast Shapelets: A Scalable Algorithm for Discovering Time Series Shapelets
نویسندگان
چکیده
Time series shapelets are a recent promising concept in time series data mining. Shapelets are time series snippets that can be used to classify unlabeled time series. Shapelets not only provide interpretable results, which are useful for domain experts and developers alike, but shapelet-based classifiers have been shown by several independent research groups to have superior accuracy on many datasets. Moreover, shapelets can be seen as generalizing the lazy nearest neighbor classifier to an eager classifier. Thus, as a deployed classification tool, shapelets can be many orders of magnitude faster than any rival with comparable accuracy. Although shapelets are a useful concept, the current literature bemoans the fact that shapelet discovery is a time-consuming task. In spite of several efforts to speed up shapelet discovery algorithms, including the use of specialist hardware, the current state-of-the-art algorithms are still intractable on large datasets. In this work, we propose a fast shapelet discovery algorithm that outperforms the current state-of-the-art by two or three orders of magnitude, while producing models with accuracy that is not perceptibly different.
منابع مشابه
Ultra-Fast Shapelets for Time Series Classification
Time series shapelets are discriminative subsequences and their similarity to a time series can be used for time series classification. Since the discovery of time series shapelets is costly in terms of time, the applicability on long or multivariate time series is difficult. In this work we propose Ultra-Fast Shapelets that uses a number of random shapelets. It is shown that Ultra-Fast Shapele...
متن کاملUnsupervised Feature Learning from Time Series
In this paper we study the problem of learning discriminative features (segments), often referred to as shapelets [Ye and Keogh, 2009] of time series, from unlabeled time series data. Discovering shapelets for time series classification has been widely studied, where many search-based algorithms are proposed to efficiently scan and select segments from a pool of candidates. However, such types ...
متن کاملScalable Clustering of Time Series with U-Shapelets
A recently introduced primitive for time series data mining, unsupervised shapelets (u-shapelets), has demonstrated significant potential for time series clustering. In contrast to approaches that consider the entire time series to compute pairwise similarities, the u-shapelets technique allows considering only relevant subsequences of time series. Moreover, u-shapelets allow us to bypass the a...
متن کاملFast Randomized Model Generation for Shapelet-Based Time Series Classification
Time series classification is a field which has drawn much attention over the past decade. A new approach for classification of time series uses classification trees based on shapelets. A shapelet is a subsequence extracted from one of the time series in the dataset. A disadvantage of this approach is the time required for building the shapelet-based classification tree. The search for the best...
متن کاملAdapting ELM to Time Series Classification: A Novel Diversified Top-k Shapelets Extraction Method
ELM (Extreme Learning Machine) is a single hidden layer feed-forward network, where the weights between input and hidden layer are initialized randomly. ELM is efficient due to its utilization of the analytical approach to compute weights between hidden and output layer. However, ELM still fails to output the semantic classification outcome. To address such limitation, in this paper, we propose...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013